Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 42(9): e0024422, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35972270

RESUMO

The 3' ends of eukaryotic mRNAs are generated by cleavage of nascent transcripts followed by polyadenylation, which occurs at numerous sites within 3' untranslated regions (3' UTRs) but rarely within coding regions. An individual gene can yield many 3'-mRNA isoforms with distinct half-lives. We dissect the relative contributions of protein-coding sequences (open reading frames [ORFs]) and 3' UTRs to polyadenylation profiles in yeast. ORF-deleted derivatives often display strongly decreased mRNA levels, indicating that ORFs contribute to overall mRNA stability. Poly(A) profiles, and hence relative isoform half-lives, of most (9 of 10) ORF-deleted derivatives are very similar to their wild-type counterparts. Similarly, in-frame insertion of a large protein-coding fragment between the ORF and 3' UTR has minimal effect on the poly(A) profile in all 15 cases tested. Last, reciprocal ORF/3'-UTR chimeric genes indicate that the poly(A) profile is determined by the 3' UTR. Thus, 3' UTRs are self-contained modular entities sufficient to determine poly(A) profiles and relative 3'-isoform half-lives. In the one atypical instance, ORF deletion causes an upstream shift of poly(A) sites, likely because juxtaposition of an unusually high AT-rich stretch directs polyadenylation closely downstream. This suggests that long AT-rich stretches, which are not encountered until after coding regions, are important for restricting polyadenylation to 3' UTRs.


Assuntos
Poli A , Poliadenilação , Isoformas de RNA , Saccharomyces cerevisiae , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas , Poli A/genética , Poli A/metabolismo , Isoformas de Proteínas/genética , Isoformas de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 2): 171-174, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33614148

RESUMO

Palladium 2-di-cyclo-hexyl-phosphanyl-2',6'-diisopropoxybiphenyl (Pd-RuPhos) catalysts demonstrate high catalytic activity for Negishi cross-couplings of sterically hindered aryl halides, for Suzuki-Miyaura cross-couplings of tosyl-ated olefins, and for Buchwald-Hartwig amination of sterically hindered amines. The solid-state structure of the free RuPhos ligand, C30H43O2P, is reported herein for the first time. RuPhos crystallizes in a triclinic cell containing two independent mol-ecules of the phosphine without any lattice solvent. Pertinent bond metrics and comparisons to other phosphine ligands are presented. The structure of RuPhos will be of assistance in the use of this ligand in the design of cross-coupling catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...